Because force always has a direction, it always works towards or against something.
you might know that force,
is rate of change of momentum i.e
force = m (v-u)/t
= (mv - mu )/ t
as we know momentum is a vector quantity so, the rate of change of momentum i.e Force would also be a vector quantity.
momentum = mass × velocity
velocity has a direction so,
momentum has also got a direction.
so, momentum is also a vector quantity.
The correct answer is "C". 'Old theories are adjusted to incorporate all old new information.' This makes the most sense, regarded the old and new information should be taken into consideration.
I hope this helped you!
Brainliest answer is always appreciated!
The characteristics of the RLC circuit allow to find the result for the capacitance at a resonance of 93.5 Hz is:
- Capacitance is C = 1.8 10⁻⁶ F
A series RLC circuit reaches the maximum signal for a specific frequency, called the resonance frequency, this value depends on the impedance of the circuit.
Where Z is the impedance of the circuit, R the resistance, L the inductance, C the capacitance and w the angular velocity. The negative sign is due to the fact that the current in the capacitor and the inductor are out of phase.
In the case of resonance, the impedance term completes the circuit as a resistive system.
Indicate that the inductance L = 1.6 H and the frequency f = 93.5 Hz.
Angular velocity and frequency are related.
w = 2π f
Let's substitute.
Let's calculate.
C = 1.8 10⁻⁶ F
In conclusion with the characteristics of the RLC circuits we can find the result for the capacitance at a 93.5 Hz resonance is:
- Capacitance is C = 1.8 10⁻⁶ F
Learn more about serial RLC circuits here: brainly.com/question/15595203
<u>Answer:</u>
2N/cm
<u>Step-by-step explanation:</u>
According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

where,
is the force which is stretching or compressing the spring,
is the spring constant; and
is the distance the spring is stretched.
Substituting the given values to find the elastic constant
to get:




Therefore, the elastic constant is 2 Newton/cm.
I would say a short person with muscles considering they are closer to the ground, but they may not be able to build up as much force in such a short time compared to the tall person.