V1 = 2.0 L
T1 = 25.0 oC = 298 K V2 = V1T2 = (2.0 L)(244 K) = 1.6 L
V2 = ? t1(298 K)
T2 = –28.9 oC = 244 K
Answer: The density of the object will be 
Explanation:
Density is defined as the mass contained per unit volume.

Given : Mass of object = 19.6 grams
Volume of object= 
Putting in the values we get:

Thus density of the object will be 
I always thought it was a mixture but can also be a compound
26, protons and nuetrons will always be the same