Answer:
4.5%
Step-by-step explanation:
800(1-0.01)=\color{green}{792}
800(1−0.01)=792
6180(1-0.05)=\color{blue}{5871}
6180(1−0.05)=5871
Last Year This Year
Stock A 800 792
Stock B 6180 5871
Total 6980 6663
\text{Find overall decrease:}
Find overall decrease:
6980(1-r)=6663
6980(1−r)=6663
\frac{6980(1-r)}{6980}=\frac{6663}{6980}
6980
6980(1−r)
=
6980
6663
1-r=0.954585
1−r=0.954585
-r=-0.045415
−r=−0.045415
Subtract 1
r=0.045415
r=0.045415
Divide by -1
\text{Final Answer: }4.5\%
Final Answer: 4.5%
Multiply by 100 and round to nearest 10th
Step-by-step explanation:
6.5r - 7.4= 12.1
6.5r = 19.5
r = 3
The distance between 2 points P(a, b) and Q(c,d) is given by the formula:
![\displaystyle{d= \sqrt{(b-d)^2+(a-c)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7Bd%3D%20%5Csqrt%7B%28b-d%29%5E2%2B%28a-c%29%5E2%7D%20)
,
Apply the formula for the points M(6, 16) and Z(-1, 14):
![\displaystyle{d= \sqrt{(16-14)^2+(6-(-1))^2}= \sqrt{2^2+7^2}= \sqrt{4+49}= \sqrt{53}\approx 7.28](https://tex.z-dn.net/?f=%5Cdisplaystyle%7Bd%3D%20%5Csqrt%7B%2816-14%29%5E2%2B%286-%28-1%29%29%5E2%7D%3D%20%5Csqrt%7B2%5E2%2B7%5E2%7D%3D%20%5Csqrt%7B4%2B49%7D%3D%20%5Csqrt%7B53%7D%5Capprox%207.28%20%20%20)
which rounded to the nearest tenth is 7.3 (units)
Answer: 7.3 units
Eight hundred ninety four thousand, two hundred and seventeen. I hope this helps.
<u>ANSWER:
</u>
Rate per annum at which CI will amount from RS 2000 to RS 2315.35 in 3 years is 5%
<u>SOLUTION:
</u>
Given,
P = RS 2000
C.I = RS 2315.35
T = 3 years
We need to find the rate per annum. i.e. R = ?
We know that,
When interest is compound Annually:
![Amount $=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{n}$](https://tex.z-dn.net/?f=Amount%20%24%3D%5Cmathrm%7BP%7D%5Cleft%281%2B%5Cfrac%7B%5Cmathrm%7BR%7D%7D%7B100%7D%5Cright%29%5E%7Bn%7D%24)
Where p = principal amount
r = rate of interest
n = number of years
![$2315.35=2000 \times\left(1+\frac{R}{100}\right)^{3}$](https://tex.z-dn.net/?f=%242315.35%3D2000%20%5Ctimes%5Cleft%281%2B%5Cfrac%7BR%7D%7B100%7D%5Cright%29%5E%7B3%7D%24)
![$\left(1+\frac{R}{100}\right)^{3}=\frac{2315.35}{2000}$](https://tex.z-dn.net/?f=%24%5Cleft%281%2B%5Cfrac%7BR%7D%7B100%7D%5Cright%29%5E%7B3%7D%3D%5Cfrac%7B2315.35%7D%7B2000%7D%24)
![$\left(1+\frac{R}{100}\right)^{3}=1.157$](https://tex.z-dn.net/?f=%24%5Cleft%281%2B%5Cfrac%7BR%7D%7B100%7D%5Cright%29%5E%7B3%7D%3D1.157%24)
![$1+\frac{R}{100}=\sqrt[3]{1.157}$](https://tex.z-dn.net/?f=%241%2B%5Cfrac%7BR%7D%7B100%7D%3D%5Csqrt%5B3%5D%7B1.157%7D%24)
![$1+\frac{R}{100}=1.0500$](https://tex.z-dn.net/?f=%241%2B%5Cfrac%7BR%7D%7B100%7D%3D1.0500%24)
![$\frac{R}{100}=1.05-1$](https://tex.z-dn.net/?f=%24%5Cfrac%7BR%7D%7B100%7D%3D1.05-1%24)
![$\frac{R}{100}=0.05$](https://tex.z-dn.net/?f=%24%5Cfrac%7BR%7D%7B100%7D%3D0.05%24)
R = 5%
Hence, rate per annum is 5 percent.