The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
Answer:
a) V ≈ 125 m/s; b) Δt = 13.24 s; c) ΔS ≈ 1450 m
Explanation:
a) We have just to calculate the vector resultant.
V² = 106² + 66.2²
V² = 15618.44
V ≈ 125 m/s
b) The time of flight is equal to the time to reach the maximum height summed to the time to reach the land.
In vertical:
V = V₀ + a * t
V = 66.2 - g * t
0 = 66.2 - 9.8 * t
t ≈ 6.76 s
So: Δt = 13.24 s
c) In horizontal:
V = ΔS / Δt
106 = ΔS / 13.52 ⇒ ΔS = 106 * 13.52
ΔS = 106 * 13.52
ΔS = 1433,12
ΔS ≈ 1450 m
From the law of the conservation of energy; the ratio of the total kinetic energy after the collision to the total kinetic energy before the collision must be 1.
<h3>What is momentum?</h3>
The term momentum is the product of mass and velocity. The principle of conservation of linear momentum states that total momentum before collision must be the same as the total momentum after collision thus the ratio of the total momentum after the collision to the total momentum before the collision must be 1.
Also, from the law of the conservation of energy; the ratio of the total kinetic energy after the collision to the total kinetic energy before the collision must be 1.
Learn more about momentum:brainly.com/question/24030570
#SPJ1
Answer:
1.11 s.
Explanation:
From the question given above, the following data were obtained:
Height (H) = 6 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =.?
The time taken for the branch to hit the ground can be obtained as follow:
H = ½gt²
6 = ½ × 9.8 × t²
6 = 4.9 × t²
Divide both side by 4.9
t² = 6/4.9
Take the square root of both side
t = √(6/4.9)
t = 1.11 s
Therefore, it will take 1.11 s for the branch to hit the ground.
Answer: a) V = 9.81 m/a
b) S = 3.905m
c) V2 = 8.29m/s
d) Yes. The speed reduces.
Explanation:
Please find the attached files for the solution