Answer:
(a) 0.833 j
(b) 2.497 j
(c) 4.1625 j
(d) 4.995 watt
Explanation:
We have given force F = 5 N
Mass of the body m = 15 kg
So acceleration 
As the body starts from rest so initial velocity u = 0 m/sec
(a) From second equation of motion 
For t = 1 sec

We know that work done W =force × distance = 5×0.1666 =0.833 j
(b) For t = 2 sec

We know that work done W =force × distance = 5×0.666 =3.33 j
So work done in second second = 3.33-0.833 = 2.497 j
(c) For t = 3 sec

We know that work done W =force × distance = 5×1.4985 =7.4925 j
So work done in third second = 7.4925 - 2.497 -0.833 = 4.1625 j
(d) Velocity at the end of third second v = u+at
So v = 0+0.333×3 = 0.999 m /sec
We know that power P = force × velocity
So power = 5× 0.999 = 4.995 watt
<span>The flywheel is solid cylindrical disc. Moment of inertial = ½ * mass * radius^2
Mass = 40.0 kg
Radius = ½ * 76.0 cm = 38 cm = 0.38 meter
Moment of inertial = ½ * 41 * 0.36^2
Convert rpm to radians/second
The distance of 1 revolution = 1 circumference = 2 * π * r
The number of radians/s in 1 revolution = 2 * π
1 minute = 60 seconds
1 revolution per minute = 2 * π radians / 60 seconds = π/30 rad/s
Initial angular velocity = 500 * π/30 = 16.667 * π rad/s
170 revolutions = 170 * 2 * π = 340 * π radians
The flywheel’s initial angular velocity = 16.667 * π rad/s. It decelerated at the rate of 1.071 rad/s^2 for 48.89 seconds.
θ = ωi * t + ½ * α * t^2
θ = 16.667 * π * 48.89 + ½ * -1.071 * 48.89^2
2559.9 - 1280
θ = 1280 radians</span>
<span>The answer is simply that evolution takes a long time to make big changes. To see evidence of that, you have to look at older records. You have to look at fossils.</span>
Answer:
The answer is B the products of photosynthesis are the reactants of cellular respiration