<h2>
Answer:</h2>
1.68 x 10⁻⁸Ωm
<h2>
Explanation:</h2>
The resistance (R) of a wire is related to its length(L), its material resistivity(ρ) and its crossectional area(A) as follows;
R = ρL/A ------------------------(i)
Where;
A = πd² / 4 [where d = diameter of the wire]
From the question;
L = 6.90m
d = 2.15mm = 0.00215m
R = 0.0320Ω
First calculate the crossectional area (A) of the wire as follows;
A = πd² / 4
[Take π = 3.142]
d = 0.00215m
∴ A = 3.142 x (0.00215)² / 4
∴ A = 0.000003631m²
Now, substitute the values of A, L, and R into equation (i) as follows;
R = ρL/A
0.0320 = ρ x 6.90 / 0.000003631
0.0320 = 1900302.95 x ρ
Solve for ρ;
=> ρ = 0.0320 / 1900302.95
=> ρ = 1.68 x 10⁻⁸Ωm
Therefore, the resistivity of the material of the wire is 1.68 x 10⁻⁸Ωm
Answer:
4. All of the above
Explanation:
The purpose of striking the ball in a volleyball game:
From the serve you could state that you need to place the ball in motion.
When returning a shot of, you normally want to change the direction of the ball's motion.
During a dropshot, you purposely want to slow down the ball's motion.
The correct answer must be all of the above.
I believe the correct answer from the choices listed above is option C. X-rays have greater frequency than microwaves. In a electromagnetic spectrum, the order in increasing frequency is as follows:
radio waves,microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation,X-rays<span> and gamma </span>rays<span>.</span>