Place the part (amount going to the left field), over the total amount of homerun:
(a) 2/57 is your probability
(b) Divide 2/57
2/57 = 0.035, or 3.5%
YES, it is unusual for this player to hit a home run to left field, for he only has a 3.5% chance.
hope this helps
<h3>
The dimensions of the given rectangular box are:</h3><h3>
L = 15.874 cm , B = 15.874 cm , H = 7.8937 cm</h3>
Step-by-step explanation:
Let us assume that the dimension of the square base = S x S
Let us assume the height of the rectangular base = H
So, the total area of the open rectangular box
= Area of the base + 4 x ( Area of the adjacent faces)
= S x S + 4 ( S x H) = S² + 4 SH ..... (1)
Also, Area of the box = S x S x H = S²H
⇒ S²H = 2000

Substituting the value of H in (1), we get:

Now, to minimize the area put :

Putting the value of S = 15.874 cm in the value of H , we get:

Hence, the dimensions of the given rectangular box are:
L = 15.874 cm
B = 15.874 cm
H = 7.8937 cm
Answer:
1) a = -⅙, b = ⅙, c = 1
2) 6 units
Step-by-step explanation:
1) f(x) = ax² + bx + c
Given the roots, we can write this as:
f(x) = a (x + 2) (x − 3)
We know that f(13) = -25, so we can plug this in to find a:
-25 = a (13 + 2) (13 − 3)
-25 = 150a
a = -⅙
Therefore, the factored form is:
f(x) = -⅙ (x + 2) (x − 3)
Distributing:
f(x) = -⅙ (x² − x − 6)
f(x) = -⅙ x² + ⅙ x + 1
Graph: desmos.com/calculator/6m6tjoodvb
2) Volume of a right prism is area of the base times the height.
V = Ah
The base is an equilateral triangle. Area of a triangle is one half the base times height.
V = ½ ab h
The height of the triangle is the same as the height of the prism.
V = ½ bh²
In an equilateral triangle, the height is equal to half the base times the square root of 3.
V = ½ b (½√3 b)²
V = ⅜ b³
Given that V = 81, solve for b.
81 = ⅜ b³
216 = b³
b = 6
You multiply both by 42: They jog 6 miles per hour
Answer:
The answer is B
Step-by-step explanation: