Answer: 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Explanation:
According to the dilution law,

where,
= concentration of stock solution = 12.0 M
= volume of stock solution = ?
= concentration of diluted solution= 6.00 M
= volume of diluted acid solution = 500 ml
Putting in the values we get:


Thus 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
The correct option is D.
The hydrogen atoms that are attached to the nitrogen atom in the ammonia molecule are capable of forming hydrogen bond. The hydrogen bond that exist in the ammonia molecule is the reason why it shows higher boiling point compare to the other hydrides. Hydrogen bond occur in ammonia because ammonia is one of the most electronegative elements.
Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g
Answer:
I think C. Hope this Helps!
Explanation:
Remember that a cation will be smaller than its neutral atom, and an anion will be larger than its neutral atom. This would automatically eliminate answer choices A and D.
Also keep in mind that atomic radii decreases from left to right as you move along a periodic table. It also decreases from bottom up.
Atomic radii increases as you move from right to left and as you go from up to down.
As bromine is higher up in the periodic table than Iodine, it would have a smaller radius. Iodine would have a larger radius.
The correct answer is B. Br