The boy’s foot causes the motion. His foot is the one that causes the ball to roll down the hill.
Answer:
Part a)

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
Explanation:
As we know by energy conservation the total energy at the bottom of the bowl is given as

here we know that on the left side the ball is rolling due to which it is having rotational and transnational both kinetic energy
now on the right side of the bowl there is no friction
so its rotational kinetic energy will not change and remains the same
so it will have

now we know that


so we have




so the height on the smooth side is given as

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as
F = ma
Where,
m= Mass
a = Acceleration
At the same time the frictional force can be defined as,

Where,
Frictional coefficient
N = Normal force (mass*gravity)
Our values are given as,

By condition of Balance the friction force must be equal to the total net force, that is to say



Re-arrange to find acceleration,



Therefore the acceleration the horse can give is 
Answer:

Explanation:
Firstly, when you measure the voltage across the battery, you get the emf,
E = 13.0 V
In order to proceed we have to assume that the voltmeter offers no loading effect, which is a valid assumption since it has a very high resistance.
Secondly, the wires must be uniform. So the resistance per unit length is constant (say z). Now, even though the ammeter has very little resistance it cannot be ignored as it must be of comparable value/magnitude when compared to the wires. This is can seen in the two cases when currents were measured. Following Ohm's law and the resistance of a length of wire being proportional to it's length, we should have gotten half the current when measuring with the 40 m wire with respect to the 20 m wire (
). But this is not the case.
Let the resistance of the ammeter be r
Hence, using Ohm's law we get the following 2 equations:
.......(1)
......(2)
Substituting the value of r from (2) in (1), we have,

which simplifying gives us,
(which is our required solution)
putting the value of z in either (1) or (2) gives us, r = 0.5325 