Answer:
F = - K x force is opposed to direction of extension
F = -100 N / m * .5 m = -50 N
Answer:
Most living things need oxygen helps organisms grow,reproduce,and turn food into energy.Oxygen gives our cells the ability to break down food in order to get the energy we need to survive.
Answer:
The gravitational force between them increases by a factor of 4
Explanation:
Gravitational force is a force of attraction between two objects with masses M and m which are separated by a distance R. It is given mathematically as:
Fg = GMm/R²
Where G = Gravitational constant.
If the distance between their centers, R, decreases by a factor of 2, then it means the new distance between their centers is:
r = R/2
Hence,the gravitational force becomes:
Fg = GMm/r²
Fg = GMm/(R/2)²
Fg = GMm/(R²/4)
Fg = 4GMm/R²
Hence,the gravitational force increases by a factor of 4.
Answer:
rm = 38280860.6[m]
Explanation:
We can solve this problem by using Newton's universal gravitation law.
In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m
![r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]](https://tex.z-dn.net/?f=r_%7Be%7D%20%3D%20distance%20earth%20to%20the%20astronaut%20%5Bm%5D.%5C%5Cr_%7Bm%7D%20%3D%20distance%20moon%20to%20the%20astronaut%20%5Bm%5D%5C%5Cr_%7Bt%7D%20%3D%20total%20distance%20%3D%203.84%2A10%5E8%5Bm%5D)
Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.
Mathematically this equals:

![F_{m} =G*\frac{m_{m}*m_{a} }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]](https://tex.z-dn.net/?f=F_%7Bm%7D%20%3DG%2A%5Cfrac%7Bm_%7Bm%7D%2Am_%7Ba%7D%20%20%7D%7Br_%7Bm%7D%20%5E%7B2%7D%20%7D%20%5C%5Cwhere%3A%5C%5CG%20%3D%20gravity%20constant%20%3D%206.67%2A10%5E%7B-11%7D%5B%5Cfrac%7BN%2Am%5E%7B2%7D%20%7D%7Bkg%5E%7B2%7D%20%7D%20%5D%20%5C%5Cm_%7Be%7D%3D%20earth%27s%20mass%20%3D%205.98%2A10%5E%7B24%7D%5Bkg%5D%5C%5C%20m_%7Ba%7D%3D%20astronaut%20mass%20%3D%20100%5Bkg%5D%5C%5Cm_%7Bm%7D%3D%20moon%27s%20mass%20%3D%207.36%2A10%5E%7B22%7D%5Bkg%5D)
When we match these equations the masses cancel out as the universal gravitational constant

To solve this equation we have to replace the first equation of related with the distances.

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.
![r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c } }{2*a}\\ where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) } }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]](https://tex.z-dn.net/?f=r_%7Bm1%2C2%7D%3D%5Cfrac%7B-b%2B-%20%5Csqrt%7Bb%5E%7B2%7D-4%2Aa%2Ac%20%7D%20%20%7D%7B2%2Aa%7D%5C%5C%20%20where%3A%5C%5Ca%3D80.25%5C%5Cb%3D768%2A10%5E%7B6%7D%20%5C%5Cc%20%3D%20-1.47%2A10%5E%7B17%7D%20%5C%5Creplacing%3A%5C%5Cr_%7Bm1%2C2%7D%3D%5Cfrac%7B-768%2A10%5E%7B6%7D%2B-%20%5Csqrt%7B%28768%2A10%5E%7B6%7D%29%5E%7B2%7D-4%2A80.25%2A%28-1.47%2A10%5E%7B17%7D%29%20%7D%20%20%7D%7B2%2A80.25%7D%5C%5C%5C%5Cr_%7Bm1%7D%3D%2038280860.6%5Bm%5D%20%5C%5Cr_%7Bm2%7D%3D-2.97%2A10%5E%7B17%7D%20%5Bm%5D)
We work with positive value
rm = 38280860.6[m] = 38280.86[km]
First we need to find the current flowing in the circuit. The three resistors are in series, so the equivalent resistance of the circuit is the sum of the three resistances:

Then we can apply Ohm's law to the whole circuit, to find the current flowing:

And now we can apply Ohm's law to the resistor of

to find the voltage drop across it: