The answer is to the equation is b
Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
Answer:
<u>16</u>
Step-by-step explanation:
We need to find 2 numbers that have a difference of 8.
Let take's 16 and 8.
As we know :
⇒ 16 - 8
⇒ <u>8</u>
<u />
The larger of these 2 numbers is <u>16</u>
Answer:

Step-by-step explanation:

Answer:
3x - 8
Step-by-step explanation:
To find f(x + 1) substitute x = x + 1 into f(x)
f(x + 1) = 3(x + 1) - 7 = 3x + 3 - 7 = 3x - 4
Similarly
f(1) = 3(1) - 7 = 3 - 7 = - 4
Hence
f(x + 1) + f(1) = 3x - 4 - 4 = 3x - 8