Answer: Maximum height = 105 feet
And, It takes 9/4 seconds to reach that point.
Step-by-step explanation:
Here the given function that shows the height of the pumpkin,
--------(1)
Where t is the time in second.
Differentiating equation (1) with respect to t,
We get, ![h'(t) = -32 t + 72](https://tex.z-dn.net/?f=h%27%28t%29%20%3D%20-32%20t%20%2B%2072)
Again differentiating above equation with respect to t,
We get, ![h''(t) = -32](https://tex.z-dn.net/?f=h%27%27%28t%29%20%3D%20-32%20)
For maximum or minimum, ![h'(t) = 0](https://tex.z-dn.net/?f=h%27%28t%29%20%3D%200)
![- 32 t + 72 = 0](https://tex.z-dn.net/?f=-%2032%20t%20%2B%2072%20%3D%200)
![32 t = 72](https://tex.z-dn.net/?f=32%20t%20%3D%2072)
![t = \frac{9}{4}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B9%7D%7B4%7D)
At t = 9/4 , h''(t) = Negative value,
Therefore, At t = 9/4 seconds, h(t) is maximum,
And, the maximum value is,
![h(\frac{9}{4} ) = -16(\frac{9}{4})^2 + 72(\frac{9}{4}) + 24](https://tex.z-dn.net/?f=h%28%5Cfrac%7B9%7D%7B4%7D%20%29%20%3D%20-16%28%5Cfrac%7B9%7D%7B4%7D%29%5E2%20%2B%2072%28%5Cfrac%7B9%7D%7B4%7D%29%20%2B%2024)
![h(\frac{9}{4} ) = -16(\frac{81}{16})+ 72(\frac{9}{4}) + 24](https://tex.z-dn.net/?f=h%28%5Cfrac%7B9%7D%7B4%7D%20%29%20%3D%20-16%28%5Cfrac%7B81%7D%7B16%7D%29%2B%2072%28%5Cfrac%7B9%7D%7B4%7D%29%20%2B%2024)
![h(\frac{9}{4} ) = -81 + 162 + 24=105](https://tex.z-dn.net/?f=h%28%5Cfrac%7B9%7D%7B4%7D%20%29%20%3D%20-81%20%2B%20162%20%2B%2024%3D105)
Therefore, the maximum height of the pumpkin is 105 feet at 9/4 seconds