Answer : The expression for reaction quotient will be :
(1) ![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) ![Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Explanation :
Reaction quotient
: It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
(1) The given balanced chemical reaction is,

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :
![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) The given balanced chemical reaction is,
![2MoO_2(s)+XeF_2(g)\rightarrow 2MoF(l)+Xe(g)+2O_2(g)[/texIn this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :[tex]Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=2MoO_2%28s%29%2BXeF_2%28g%29%5Crightarrow%202MoF%28l%29%2BXe%28g%29%2B2O_2%28g%29%5B%2Ftex%3C%2Fp%3E%3Cp%3EIn%20this%20expression%2C%20only%20gaseous%20or%20aqueous%20states%20are%20includes%20and%20pure%20liquid%20or%20solid%20states%20are%20omitted.%20%20So%2C%20the%20expression%20for%20reaction%20quotient%20will%20be%20%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DQ_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Given what we know, the ability of water to absorb more heat than the other substances mentioned is a reflection of its high boiling point.
<h3>What do we mean by boiling point?</h3>
This is the temperature at which the substance boils, and subsequently evaporates. Having a higher boiling point means that the substance will be able to absorb much more heat than that of a substance with a lower boiling point.
Therefore, Water molecules have a higher boiling point than molecules of similar size, such as ammonia and methane, reflecting its capacity to absorb large amounts of heat.
To learn more about water molecules visit:
brainly.com/question/11405437?referrer=searchResults