The model of the solar system is way smaller than the real object. The model of sub-atomic particles in a atom is way larger than the real object.
The question is incomplete, the complete question is;
A magnet was placed near a pile that contained both iron and sulfur. The magnet was moved gradually closer to the pile. As it neared the pile, the magnet started attracting small pieces of iron from the pile. Which of these statements best describes the contents of the pile?
F. It is a homogeneous mixture of iron and sulfur. G. It is a heterogeneous mixture of iron and sulfur. H. It is a compound that contains both iron and sulfur. I. It is a compound that can be separated by magnetism.
Answer:
G. It is a heterogeneous mixture of iron and sulfur.
Explanation:
A heterogeneous mixture is one that does not have a uniform composition throughout.
We must recall that a mixture is any combination of substances that do not chemically react together and are separable by physical means.
Having said this, it is clear that I can separate the iron from sulphur by simple magnetic (physical) means. Hence, it is a heterogeneous mixture of iron and sulfur.
The empirical formula is Fe₃O₄.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the molar ratio of Fe to O.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio</u>¹ <u>×3</u>² <u>Integers</u>³
Fe 0.77 1 3 3
O 1.0 1.3 3.9 4
¹ To get the molar ratio, you divide each number of moles by the smallest number (0.77).
² If the ratio is not close to an integer, multiply by a number (in this case, 3) to get numbers that are close to integers.
³ Round off these numbers to integers (3 and 4).
The empirical formula is Fe₃O₄.
Answer:
22.5 mL
Explanation:
We are given an amount of a fluid in a graduated cylinder and required to determine its volume.
Liquids always take the shape of the container they are placed in. In the graduated cylinder shown, note how the top of the fluid curves downwards. The volume of the liquid is usually determined at the bottom of this curve or what is called the meniscus.
The bottom of the meniscus is at the 22.5 mL level and thus the volume of the fluid is 22.5 mL