There must be an intramolecular force. The oxygen atoms are produced as a result of the breakdown of oxygen molecules. Intramolecular force is necessary to stop the oxygen (O2) in the air from changing into the O atom.
Which force causes attraction between O2 molecules?
The result is the London dispersion force, a fleeting attractive attraction, which is created when the electrons in two neighboring atoms occupy positions that temporarily cause the atoms to form dipoles. This interaction is commonly described by the phrase "induced dipole-induced dipole attraction".
What is the difference between intramolecular forces and intermolecular forces which type is stronger?
In general, intramolecular forces are greater than intermolecular forces. Ion-dipole interaction exerts the strongest intermolecular force, followed by hydrogen bonds, dipole-dipole interaction, and London dispersion. Examples. Hydrogen bonding forces, London dispersion forces, and dipole-dipole forces are the three different kinds of intermolecular interactions. The three different kinds of intramolecular forces are metal bonds, ionic bonds, and covalent bonds.
Learn more about intramolecular forces: brainly.com/question/28170469
#SPJ4
To calculate percent composition, you first need to find the molar mass of C (carbon), H (hydrogen) and O (oxygen).
C is 12.01
H is 1.00
O is 16
Then multiply each by the number of atoms of each element in the formula (the number that comes after each element in the equation for example C6 means 6 carbon atoms.
C: 12.01 x 6= 72.06
H: 1x12= 12
O: 16x6= 96
Then add them up.
72.06+ 12+ 96= 180.06
Now find the percent composition of carbon.
72.06/ 180.06 x 100= 40.01%
So the answer is C 40%.
Answer:
Explanation:
We know that momentum is the product of mass and velocity so here
mass (m) = 1700 kg
velocity (v) = 13 m/s
So now
momentum = m * v
= 1700 * 13
= 22100 kg m/s
hope it helps :)
Molar Mass is the mass of a given substance, referring to the Atomic Weight of elements. Therefore, the Molar Mass of Iron (Fe) would be 55.845 gmol-1