I would say either a or b
Split up the interval [0, 3] into 3 equally spaced subintervals of length
. So we have the partition
[0, 1] U [1, 2] U [2, 3]
The left endpoint of the
-th subinterval is
![\ell_i = i - 1](https://tex.z-dn.net/?f=%5Cell_i%20%3D%20i%20-%201)
where
.
Then the area is given by the definite integral and approximated by the left-hand Riemann sum
![\displaystyle \int_0^3 f(x) \, dx \approx \sum_{i=1}^3 f(\ell_i) \Delta x \\\\ ~~~~~~~~~~ = \sum_{i=1}^3 (i-1)^3 \\\\ ~~~~~~~~~~ = \sum_{i=0}^2 i^3 \\\\ ~~~~~~~~~~ = 0^3 + 1^3 + 2^3 = \boxed{9}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E3%20f%28x%29%20%5C%2C%20dx%20%5Capprox%20%5Csum_%7Bi%3D1%7D%5E3%20f%28%5Cell_i%29%20%5CDelta%20x%20%5C%5C%5C%5C%20~~~~~~~~~~%20%3D%20%5Csum_%7Bi%3D1%7D%5E3%20%28i-1%29%5E3%20%5C%5C%5C%5C%20~~~~~~~~~~%20%3D%20%5Csum_%7Bi%3D0%7D%5E2%20i%5E3%20%5C%5C%5C%5C%20~~~~~~~~~~%20%3D%200%5E3%20%2B%201%5E3%20%2B%202%5E3%20%3D%20%5Cboxed%7B9%7D)
<em>Your answer will be, </em><em>"6p - 8"</em>
Thanks,
<em>Deku ❤</em>
Step-by-step explanation:
<h3>this is given that the figure is a hexagon</h3><h3>let give a name to the given hexagon be ABCDEF</h3>
<h3>Angle a + B + C + D = 720 ( Ls sum pro. of hexagon)</h3><h3>3x-20+3x-20+4x+4x+3x-20+3x-20 = 720</h3><h3>3x+3x+3x+3x+4x+4x-20-20-20-20 = 720 (rearranging)</h3><h3>20x - 80 = 720</h3><h3>20x = 720 + 80 </h3><h3>x=800/20</h3>
<h2>x = 40 degrees </h2>
<h3>3x-20 = 100</h3><h3>4x = 160</h3>
<h2>I HOPE THAT THIS ANSWER HELPS YOU</h2>