Answer:
The answer to your question is maybe letter D, but the last oxygen needs a number 6.
Explanation:
The empirical formula gives the actual elements that form part of a molecule but not the total numbers.
The molecular formula gives the total number of atoms of each element in a molecule.
We must factor the molecular formula to know if a formula is the empirical formula of that.
A. CH₄ C₂H₆ = 2(CH₃) these are not empirical molecular formulas
B. CH₂O C₄H₆O these are not empirical-molecular formulas
C. O₂ O₃ these are not empirical-molecular formulas
D. C₃H₄O₃ C₆H₈O these are not empirical-molecular formulas
the last oxygen needs a number 6 to be
the answer.
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724
Answer:
B) exothermic.
Explanation:
Hello!
In this case, we need to keep in mind that exothermic reactions release heat, so they increase the temperature as the final energy is less than the initial energy; in contrast, endothermic reactions absorb heat, so they decrease the temperature as the final energy is greater than the initial energy.
In such a way, when a dissolution process shows off a negative enthalpy of dissolution, we infer it is an exothermic process due to the aforementioned; therefore, the answer is:
B) exothermic
.
Best regards!
Answer: check explanation
Explanation:
In this question we are to find mass. In order to calculate the Mass, We need the values of two parameters, that is, the values given for the grade tow chain, and the value given for the mass per length.
Assuming the mass per length is 3 Kilogram per metre(kg/m) and the grade 70 tow chain length is 5 metre(m).
Therefore, the formula for calculating mass of the chain is given below;
Mass of the chain= mass per unit length(kg/m) × length ---------------------------------------------------------------------------------------------------------------------(1).
Mass of the chain= 3 kg/m × 5 m.
Mass of the chain= 15 kg.
H2O is the correct answer :)