Answer:
Chlorine is more likely to steal a valence electron from sodium.
Explanation:
Sodium is number 11 on the periodic table with one valence electron. Belonging to the first group, it's one of the alkali metal, which are known to be highly reactive. Chlorine is number 17 with seven valence electrons, and it's in the second-to-last group of halogens--also very reactive.
Considering that elements with one valence electron are just about 100% likely to give up electrons to reach a stable state, sodium would be the element that is more likely to lose its valence electron to chlorine. In other words, chlorine would be the electron thief.
A chemical symbol is a shorthand method of representing an element. Instead of writing out the name of an element, we represent an element name with one or two letters. As you know, the periodic table is a chemist's easy reference guide. ... Each element is represented by a chemical symbol consisting of letters
Work out the number of moles in
100.00 grams of the oxide.
For nitrogen: The atomic mass of N is 14.0067, and we have 36.84 g N:
36.84 g N14.0067 g N/mol N=2.630 mol N
For oxygen: The atomic mass of O is
15.9994, and we have
100.00−36.84=63.16 g O:
63.16 g N 15.9994 g N/mol N=3.948 mol N
Now the ratio 3.958 2.630 is very close to
1.5=32
. So we conclude that the gas has three moles
O to two moles N making the empirical formula
N2O3.
<h2>
<u>Mark as Brainliest</u></h2>