Answer:
2.65
Step-by-step explanation:
Multiply each payout by its probability, then add those products.
See the attached image.
The first column has the payouts. The second column has the probabilities. The third column has the results of multiplying a payout by its probability.
The sum of the entries in the third column is 2.65
Answer:
1.75
Step-by-step explanation:
If a and b are two numbers, then their arithmetic mean is

Given:

Divide this equation by 10:

Now, divide it by 2:

Because the vertex of the parabola is at (16,0), its equation is of the formy = a(x-10)² + 15
The graph goes through (0,0), thereforea(0 - 10)² + 15 = 0100a = -15a = -0.15
The equation is y = f(x) = -0.15(x - 10)² + 15
The graph is shown below.
Part A
Note that y = f(x).
The x-intercepts identify values where the function or y=0. The x-intercepts occur at x=0 and x=20, or at (0,0) and (20,0).
The maximum value of y occurs at the vertex (10, 15) because the curve is down due to the negative leading coefficient of -0.15.
The curve increases in the interval x = (-∞, 10) and it decreases in the interval x = (10, ∞).
Part B
When x=12, y = -0.15(12 - 10)² + 15 = 14.4When x=15, y = -0.15(15 - 10)² + 15 = 11.25
The average rate of change between x =12 to x = 15 is(11.25 - 14.4)/(15 - 12) = -1.05
This rate of change represents the slope of the secant line from A to B. It approximates the rate at which f(x) decreases in the interval x =[12, 15].
Answer:
that is impossible
Step-by-step explanation:
because you have 2 equations where y+z equal different numbers
∫(t = 2 to 3) t^3 dt
= (1/4)t^4 {for t = 2 to 3}
= 65/4.
----
∫(t = 2 to 3) t √(t - 2) dt
= ∫(u = 0 to 1) (u + 2) √u du, letting u = t - 2
= ∫(u = 0 to 1) (u^(3/2) + 2u^(1/2)) du
= [(2/5) u^(5/2) + (4/3) u^(3/2)] {for u = 0 to 1}
= 26/15.
----
For the k-entry, use integration by parts with
u = t, dv = sin(πt) dt
du = 1 dt, v = (-1/π) cos(πt).
So, ∫(t = 2 to 3) t sin(πt) dt
= (-1/π) t cos(πt) {for t = 2 to 3} - ∫(t = 2 to 3) (-1/π) cos(πt) dt
= (-1/π) (3 * -1 - 2 * 1) + [(1/π^2) sin(πt) {for t = 2 to 3}]
= 5/π + 0
= 5/π.
Therefore,
∫(t = 2 to 3) <t^3, t√(t - 2), t sin(πt)> dt = <65/4, 26/15, 5/π>.