Hey there!:
Volume = 175.4 mL
density = 0.8786 g/mL
mass = ?
Therefore:
D = m / V
0.8786 = m / 175.4
m = 0.8786 * 175.4
m = 154.10644 g
hope this helps!
86 percent is the percent yield for this experiment if he expected to produce 5g of product.
Explanation:
Given that:
mass of test tube = 5 grams
mass of test tube + reactant is 12.5 grams
mass of reactant = ( mass of test tube + reactant ) - (mass of test tube)
mass of reactant = 12.5 -5
= 7.5 grams
when 7.5 grams of reactant is heated mass of test tube was found to be 9.3 grams.
so mass of product formed = 9.3 - 5
= 4. 3 grams of product is formed (actual yield)
However, he expected the product to be 5 grams (theoretical yield)
Percent yield =
x 100
putting the values in the formula:
percent yield =
x 100
= 86 %
86 percent is the percent yield.
To think the answer is grasses
Max Planck concluded that energy is not continuous and is carried in discontinuous units which he named quanta.
Answer:
= 19
ΔG° of the reaction forming glucose 6-phosphate = -7295.06 J
ΔG° of the reaction under cellular conditions = 10817.46 J
Explanation:
Glucose 1-phosphate ⇄ Glucose 6-phosphate
Given that: at equilibrium, 95% glucose 6-phospate is present, that implies that we 5% for glucose 1-phosphate
So, the equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)


= 19
The formula for calculating ΔG° is shown below as:
ΔG° = - RTinK
ΔG° = - (8.314 Jmol⁻¹ k⁻¹ × 298 k × 1n(19))
ΔG° = 7295.05957 J
ΔG°≅ - 7295.06 J
b)
Given that; the concentration for glucose 1-phosphate = 1.090 x 10⁻² M
the concentration of glucose 6-phosphate is 1.395 x 10⁻⁴ M
Equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)

0.01279816514 M
0.0127 M
ΔG° = - RTinK
ΔG° = -(8.314*298*In(0.0127)
ΔG° = 10817.45913 J
ΔG° = 10817.46 J