Answer:
The added mass will mean a longer period of oscillation.
Explanation:
The period of oscillation here is given by the formula;
T = 2π√(m/k)
Where m is mass and k is spring constant
From the equation of oscillation period above, it's obvious that when we increase the mass, the oscillation period will also increase.
Thus, the added mass will mean a longer period of oscillation.
Answer:
Explanation:
Conclusion is simple you can just say that it is the value written in words form only.
Nothing else is written about it
3 protons should be your answer
The box is accelerated from rest to 4 m/s in a matter of 2.5 s, so its acceleration <em>a</em> is such that
4 m/s = <em>a</em> (2.5 s) → <em>a</em> = (4 m/s) / (2.5 s) = 1.6 m/s²
Then the force applied to the box has a magnitude <em>F</em> such that
<em>F</em> = (10 kg) (1.6 m/s²) = 16 N
Answer:
X=92.49 m
Explanation:
Given that
u= 21 m/s
h= 97 m
Time taken to cover vertical distance h
h= 1/2 g t²
By putting the values
97 = 1/2 x 10 x t² ( g = 10 m/s²)
t= 4.4 s
The horizontal distance
X= u .t
X= 21 x 4.4
X=92.49 m