1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
3 years ago
11

What are some of the forces that are found in skateboarding?

Physics
1 answer:
Dominik [7]3 years ago
7 0
Normal force, friction force, gravitational force
You might be interested in
Total mechanical energy (The sum of kinetic and potential energy
victus00 [196]

Answer:

Emechanical=mgh+\frac{1}{2}mν²

Explanation:

The equation for the total mechanical energy is:

Emechanical=Epotential+Ekinetic

In which,

Epotential=mgh; m: mass of the body, g: gravity; h: height

Ekinetic=\frac{1}{2}mν²; m: mass of the body, ν: velocity of the body

So,

Emechanical=mgh+\frac{1}{2}mν²

5 0
3 years ago
which planet should punch travel to if his goal is to weigh in at 118 lb? refer to the table of planetary masses and radii given
Harrizon [31]

The planet that Punch should travel to in order to weigh 118 lb is Pentune.

<h3 /><h3 /><h3>The given parameters:</h3>
  • Weight of Punch on Earth = 236 lb
  • Desired weight = 118 lb

The mass of Punch will be constant in every planet;

W = mg\\\\m = \frac{W}{g}\\\\m = \frac{236}{g}

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

F = mg = \frac{GmM}{R^2} \\\\g = \frac{GM}{R^2}

where;

  • M is the mass of Earth = 5.972 x 10²⁴ kg
  • R is the Radius of Earth = 6,371 km

For Planet Tehar;

g_T =\frac{G \times 2.1M}{(0.8R)^2} \\\\g_T = 3.28(\frac{GM}{R^2} )\\\\g_T = 3.28 g

For planet Loput:

g_L =\frac{G \times 5.6M}{(1.7R)^2} \\\\g_L = 1.94(\frac{GM}{R^2} )\\\\g_L = 1.94g

For planet Cremury:

g_C =\frac{G \times 0.36M}{(0.3R)^2} \\\\g_C = 4(\frac{GM}{R^2} )\\\\g_C = 4 g

For Planet Suven:

g_s =\frac{G \times 12M}{(2.8R)^2} \\\\g_s = 1.53(\frac{GM}{R^2} )\\\\g_s = 1.53 g

For Planet Pentune;

g_P =\frac{G \times 8.3 }{(4.1R)^2} \\\\g_P = 0.5(\frac{GM}{R^2} )\\\\g_P = 0.5 g

For Planet Rams;

g_R =\frac{G \times 9.3M}{(4R)^2} \\\\g_R = 0.58(\frac{GM}{R^2} )\\\\g_R = 0.58 g

The weight Punch on Each Planet at a constant mass is calculated as follows;

W = mg\\\\W_T = mg_T\\\\W_T = \frac{236}{g} \times 3.28g = 774.08 \ lb\\\\W_L = \frac{236}{g} \times 1.94g =457.84 \ lb\\\\ W_C = \frac{236}{g}\times 4g = 944 \ lb \\\\ W_S = \frac{236}{g} \times 1.53g = 361.08 \ lb\\\\W_P = \frac{236}{g} \times 0.5 g = 118 \ lb\\\\W_R = \frac{236}{g} \times 0.58 g = 136.88 \ lb

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.

<u>The </u><u>complete question</u><u> is below</u>:

Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.

Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).

<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>

Learn more about effect of gravity on weight here: brainly.com/question/3908593

5 0
2 years ago
A proton moves from a location where V = 87 V to a spot where V = -40 V. (a) What is the change in the proton's kinetic energy?
Art [367]

Answer: a) 127 eV; b) there is no change of kinetic energy.

Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field.  This means the electric force do work in this trayectory and then the protons increased changes its speed.

If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then  they can not move to higher potential  if any  external force does work on the system.

In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons  can not move to lower potential region (V=-40V).

6 0
3 years ago
A string is tied between two posts separated by 2.4 m. When the string is driven by an oscillator at frequency 567 Hz, 5 points
Alex787 [66]

Explanation:

The given data is as follows.

       Length (l) = 2.4 m

       Frequency (f) = 567 Hz

Formula to calculate the speed of a transverse wave is as follows.

                  f = \frac{5}{2l} \times v

Putting the gicven values into the above formula as follows.

                  f = \frac{5}{2l} \times v

                 567 Hz = \frac{5}{2 \times 2.4 m} \times v

                      v = 544.32 m/s

Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.

5 0
3 years ago
Which are characteristics of electromagnetic waves?check all that apply.
emmainna [20.7K]

Correct choices are marked in bold:

travel in straight lines and can bounce off surfaces  --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces

travel through space at the speed of light  --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light, c=3\cdot 10^8 m/s)

travel only through matter  --> FALSE; electromagnetic waves can also travel through vacuum

travel only through space  --> FALSE, electromagnetic waves can also travel through matter

can bend around objects  --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits

move by particles bumping into each other  --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved

move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave

8 0
3 years ago
Read 2 more answers
Other questions:
  • In the figure, a 3.7 kg block slides along a track from one level to a higher level after passing through an intermediate valley
    7·1 answer
  • Which of the following components promote total health and prevent the beginning of diseases and problems associated with physic
    13·1 answer
  • Why does a star grow larger after it exhausts its core hydrogen?
    14·1 answer
  • An electron moving with a velocity = 5.0 × 10 7 m/s enters a region of space where perpendicular electric and a magnetic fields
    6·1 answer
  • What does White Fang’s interaction with the setting reveal?
    8·1 answer
  • A 1100-kg car pulls a boat on a trailer. (Enter the magnitude.) (a) What total force (in N) resists the motion of the car, boat,
    5·1 answer
  • A copper block with a mass of 300 grams is cooled to 77 K by being immersed in liquid nitrogen. The block is then placed in a St
    14·1 answer
  • A parallel-plate capacitor is connected to a battery until it is fully charged. Then, the capacitor is disconnected from the bat
    13·1 answer
  • A flat coil is in a uniform magnetic field. What angle between the magnetic field and the plane of the coil produces the maximum
    10·1 answer
  • What is the weight of a 63.7 kg person? ?N
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!