Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet, 
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :

M is the mass of the sun

T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
I am so sure it's 600,000 x 500 so you get 300,000,000
Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.
Answer: C. Metals are found on the left side of the periodic table.
Explanation:
The periodic table contains vertical columns called as groups and horizontal rows called as periods.
Period 2 contains 8 elements which are lithium, beryllium , boron , carbon, nitrogen, oxygen , fluorine and neon. Only Lithium and beryllium are metals.
Group 18 contains all the noble gases which are all non metals.
Metals are the elements which loose electrons easily and form positive ions. Non-metals are the elements which can gain electrons easily and form negative ions.
Metals are present on left side of the periodic table and as we move to right side of the periodic table , the metallic character decreases and thus non metals are found on the right side of the periodic table.
Answer:
6.00 x 10⁻⁸N
Explanation:
Given parameters:
Mass of each dump trucks = 1500kg
Distance between them = 50m
Unknown:
New gravitational force between them = ?
Solution:
From Newton's law of universal gravitation,
F =
F is the gravitational force
G is the universal gravitation constant
m is the mass
r is the distance
F =
= 6.00 x 10⁻⁸N