First find the oxidation states of the various atoms:
<span>in Cr2O2 2- Cr @ +1; In NH3 N @ +3; in CrO3 Cr @ +3, N2 N @ 0 </span>
<span>Note that N gained electrons, ie, was reduced; Cr was oxidized </span>
<span>Now there is a problem, because B has NH4+ which the problem did not, and is not balanced, showing e- in/out </span>
<span>B.NH4+ → N2 </span>
<span>Which of the following is an oxidation half-reaction? </span>
<span>A.Sn 2+ →Sn 4+ + 2e- </span>
<span>Sn lost electrons so it got oxidized</span>
Answer:
H₂O
Explanation:
Based electronegativity, water H₂O will have the higher melting point from the given choices. The binding force between hydrogen and oxygen is greater than for the others.
- In group 6, oxygen has the highest electronegativity.
- It pulls the shared electron closer in the bond.
- The high electronegativity between hydrogen and oxygen causes the elevated melting point between the two species.
Answer:
Heat and mass transfer of a LiBr/water absorption heat pump system (AHP) was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.