2H₂(g) + O₂(g) ⇄ 2H₂O(l)
Δngas = 0 - (2 +1)
= -3
<h3>
What is Δngas?</h3>
The number of moles of gas that move from the reactant side to the product side is denoted by the symbol ∆n or delta n in this equation.
Once more, n represents the growth in the number of gaseous molecules the equilibrium equation can represent. When there are exactly the same number of gaseous molecules in the system, n = 0, Kp = Kc, and both equilibrium constants are dimensionless.
<h3>
Definition of equilibrium</h3>
When a chemical reaction does not completely transform all reactants into products, equilibrium occurs. Many chemical processes eventually reach a state of balance or dynamic equilibrium where both reactants and products are present.
Learn more about Equilibrium
brainly.com/question/11336012
#SPJ4
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer:
lesser the molar mass of the gas higher the no. of moles included in a certain mass sample. ie at STP more volume is required for the gas having less molar mass.
He has the smallest molar mass.
Therefore bag of He is the biggest.
Answer:
Resonance Structures for SCN-:[S-C N]-
Resonance StructureEnergy (kJ/mol)[S-C N]--23.00[S=C=N]
Molar solubility of AgCl will be 0.59 ×
M.
The amount of a chemical that can dissolve in one liter of a solution before reaching saturation is known as its molar solubility. This implies that the quantity of a substance it can disintegrate in a solution even before the solution becomes saturated with that particular substance is determined by its molar solubility.
A compound's molar solubility would be the measure of how many moles of such a compound must dissolve to produce one liter of saturated solution. The molar solubility unit will be mol L-1.
Calculation of molar solubility:
Given data:
M = 0.30 M
= 1.77 × 
The reaction can be written as:
AgCl ⇔ 
s s (s+0.30)
= [
]+ [
]
1.77 ×
= s (0.30)
s = 1.77 ×
/ 0.3
s = 0.59 ×
M
Therefore, molar solubility of AgCl will be 0.59 ×
M.
To know more about molar solubility
brainly.com/question/16243859
#SPJ4