Answer:
answer is C
Explanation:
encourage the release of carbon dioxide from the stems
<h3>Answer:</h3>
18.75 grams
<h3>Explanation:</h3>
- Half-life refers to the time taken by a radioactive material to decay by half of the original mass.
- In this case, the half-life of element X is 10 years, which means it takes 10 years for a given mass of the element to decay by half of its original mass.
- To calculate the amount that remained after decay we use;
Remaining mass = Original mass × (1/2)^n, where n is the number of half-lives
Number of half-lives = Time for the decay ÷ Half-life
= 40 years ÷ 10 years
= 4
Therefore;
Remaining mass = 300 g × (1/2)⁴
= 300 g × 1/16
= 18.75 g
Hence, a mass of 300 g of an element X decays to 18.75 g after 40 years.
If you have 58.93g of Co it means that you only have 1 mol (use a periodic table to find the answer, if you had more find it by proportion, it's easier).
There's 6.022 x 10^23 atoms per mol so you have 6.022 x 10^23 atoms of Co.
(once again if you had more mol, you could find the answer by proportions).
Here, we are required to determine the volume of the earth which is 1.08326 × 10¹² km³ in liters.
<em>The volume of the earth is approximately</em>,
, 1.08326 × 10²⁴ liters
By conversion factors;
- <em>1dm³ = 1liter</em>
- However; <em>1km = 10000dm = 10⁴ </em><em>dm</em>
- Therefore, 1km³ = (10⁴)³ dm³.
Consequently, 1km³ = 10¹²dm³ = 10¹²liters.
The conversion factor from 1km³ to liters is therefore, c.f = 10¹²liters/km³
Therefore, the volume of the earth which is approximately, 1.08326 × 10¹² km³ can be expressed in liters as;
<em>1.08326 × 10¹² km³ × 10¹²liters/km³ </em>
The volume of the earth is approximately,
1.08326 × 10²⁴ liters.
Read more:
brainly.com/question/16814684