Answer:


Explanation:
<u>Net Force And Acceleration
</u>
The Newton's second law relates the net force applied on an object of mass m and the acceleration it aquires by

The net force is the vector sum of all forces. In this problem, we are not given the magnitude of each force, only their angles. For the sake of solving the problem and giving a good guide on how to proceed with similar problems, we'll assume both forces have equal magnitudes of F=40 N
The components of the first force are


The components of the second force are


The net force is


The magnitude of the net force is


The acceleration has a magnitude of



The direction of the acceleration is the same as the net force:


Answer:
Explanation:
Mercury moves the fastest.
Answer: Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance traveled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.
Explanation: For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-
V=f×λ
Where,
V is the velocity of the wave measure using m/s.
f is the frequency of the wave measured using Hz.
λ is the wavelength of the wave measured using m. Velocity and Wavelength Relation
Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.
Given by:
V∝λ
Example:
For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.
For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.
Hope you understood the relation between wavelength and velocity of a wave. I truely hope this helps you out tho! Goodluck!
Answer:
v = 12.12 m/s
Explanation:
It is given that,
Radius of circle, r = 30 m
The coefficient friction between tires and road is 0.5,
The centripetal force is balanced by the force of friction such that,
v = 12.12 m/s
So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.
Answer:
no ma'am ill help you look
Explanation: