If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
It <span>Ions were once atoms with the same number of electrons and protons. Since they have opposite charges atoms are neutral. When they become ions the lose or gain electrons and become unbalanced. ... These different charges are attracted to each other via electric forces.</span>
Explanation:
Calculate position vectors in a multidimensional displacement problem. Solve for the displacement in two or three dimensions. Calculate the velocity vector
Answer:
410 m
Explanation:
Given:
v₀ = 20.5 m/s
a = 0 m/s²
t = 20 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²
Δx = 410 m
Answer:
Expression of work done is

Work done to move the sled is given as 187.2 J
Explanation:
As we know that the formula of work done is given as

here we know that
F = 12.6 N
d = 15.4 m

so we will have

