The average dissipated power in a resistor in a ac circuit is:

where R is the resistance, and

is the root mean square current, defined as

where

is the peak value of the current. Substituting the second formula into the first one, we find

and if we re-arrange this formula and use the data of the problem, we can find the value of the peak current I0:
Answer:
Explanation:
Using the principle of moment, assuming the rod is uniform rod of mass 1 kg
the center of mass of the rod will be at 1 m
assuming the system is in equilibrium,
clockwise moment = anticlockwise moment
let the distance of the man shoulder be x from the center of gravity and also is the pivot point
total mass of bucket + mass of honey = 2kg + 3 kg = 5 kg for rear bucket and
2kg + 5 kg = 7 kg for front bucket
( 5kg × ( 1+x)) + ( 1 kg × x) = 7 kg × ( 1 - x)
5 + 5 x + x = 7 - 7x
5 + 6x = 7 - 7x
6x + 7x = 7 - 5
13x = 2
x = 2 / 13 = 0.154 m
the honeybucket man's shoulder is 0.154 m from the center of the pole ( forward ).
Answer = 330 m/s
The wave equation is as follows:
Wave speed = wavelength x frequency
The known values are:
Wavelength = 3m
Frequency = 110 Hz
Substitute the known values into the wave equation to find the wave speed.
Wave speed = 3 x 110
Wave speed = 330 m/s
Answer:
1 Newton
Explanation:
F=9*10^9*q0q1/r^2]]
F=9*10^9*(q0q1)/ r^2
r=3cm
F=4N
F=9*10^9*(q0q1)/3^2
4=9*10^9*(q0q1)/9
4=10^9 q0q1
q0q1=4/10^9
q0q1=4*10^-9
To calculate the force between the forces at a distance of 6 cm
F=9*10^9*(q0q1)/ r^2
=9*10^9*(4*10^-9)/6^2
=9*10^9*(4*10^-9)/36
=10^9*4*10^-9/4
=10^9*10^-9
=1 Newton