Answer:
Part a)

Part b)

Part c)


Explanation:
Part a)
As we know that frequency = 1 MHz
speed of electromagnetic wave is same as speed of light
So the wavelength is given as



Part b)
As we know the relation between electric field and magnetic field



Part c)
Intensity of wave is given as



Pressure is defined as ratio of intensity and speed


Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Displacement is usually given to you as it is, but you can also get displacement through velocity by Δd= Δv*t, where <span>Δv is the change in velocity and t is the change in time.
</span>
Answer:
v = 0.22 c and wavelength is decrease so galaxy A is move away from stationary galaxy
v = 0.095 c and wavelength is increase so galaxy B come toward stationary galaxy
Explanation:
Given data
found = 500 nm
shifted A = 400 nm
shifted B = 550 nm
to find out
How fast and in what direction is galaxy
solution
we use here formula that is
(λ) shifted = √(1-β / 1+β) (λ)found
1-β / 1+β = (4/5)² ..................1
1-β / 1+β = 16 / 25
β = 0.22
v/c = 0.22
v = 0.22 c
here wavelength is decrease so galaxy A is move away from stationary galaxy
and
here according to equation 1
and we use shifted 550 nm
so
1-β / 1+β = (5.5/5)²
1-β / 1+β = 30.25 / 25
β = 0.095
so v/c = 0.095
v = 0.095 c
here wavelength is increase so galaxy B come toward stationary galaxy