Answer:
is the time taken by the car to accelerate the desired range of the speed from zero at full power.
Explanation:
Given:
Range of speed during which constant power is supplied to the wheels by the car is
.
- Initial velocity of the car,

- final velocity of the car during the test,

- Time taken to accelerate form zero to 32 mph at full power,

- initial velocity of the car,

- final desired velocity of the car,

Now the acceleration of the car:



Now using the equation of motion:


is the time taken by the car to accelerate the desired range of the speed from zero at full power.
The answer is b i just did the test
From an energy balance, we can use this formula to solve for the angular speed of the chimney
ω^2 = 3g / h sin θ
Substituting the given values:
ω^2 = 3 (9.81) / 53.2 sin 34.1
ω^2 = 0.987 /s
The formula for radial acceleration is:
a = rω^2
So,
a = 53.2 (0.987) = 52.494 /s^2
The linear velocity is:
v^2 = ar
v^2 = 52.949 (53.2) = 2816.887
The tangential acceleration is:
a = r v^2
a = 53.2 (2816.887)
a = 149858.378 m/s^2
If the tangential acceleration is equal to g:
g = r^2 3g / sin θ
Solving for θ
θ = 67°
If Fg=mg=ma and, Fg(planetX)=1/5Fg(earth)
then the time would be 5x of the time as gravity is acceleration. So 3.9s*5=19.5s
As the force of gravity is less, then the acceleration of masses is also less, therefore it will take more time for the object to fall by the factor of the force of gravity difference
Answer:
it's C (this is not a guess)