1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
2 years ago
10

A car traveling at a velocity v can stop in a minimum distance d. What would be the car's minimum stopping distance if it were t

raveling at a velocity of 2v?
a. 4d
b. 2d
c. 8d
d. √2 d
e. d
Physics
1 answer:
alexira [117]2 years ago
5 0

Answer:

a. 4d.

If the car travels at a velocity of 2v, the minimum stopping distance will be 4d.

Explanation:

Hi there!

The equations of distance and velocity of the car are the following:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x =  position of the car at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

v = velocity of the car at time t.

Let´s find the time it takes the car to stop using the equation of velocity. When the car stops, its velocity is zero. Then:

velocity = v0 + a · t      v0 = v

0 = v + a · t

Solving for t:

-v/a = t

Since the acceleration is negative because the car is stopping:

v/a = t

Now replacing t = v/a in the equation of position:

x = x0 + v0 · t + 1/2 · a · t²     (let´s consider x0 = 0)

x = v · (v/a) + 1/2 · (-a) (v/a)²    

x = v²/a - 1/2 · v²/a

x = 1/2 v²/a

At a velocity of v, the stopping distance is 1/2 v²/a = d

Now, let´s do the same calculations with an initial velocity v0 = 2v:

Using the equation of velocity:

velocity = v0 + a · t

0 = 2v - a · t

-2v/-a = t

t = 2v/a

Replacing in the equation of position:

x1 = x0 + v0 · t + 1/2 · a · t²  

x1 = 2v · (2v/a) + 1/2 · (-a) · (2v/a)²

x1 = 4v²/a - 2v²/a

x1 = 2v²/a

x1 = 4(1/2 v²/a)

x1 = 4x

x1 = 4d

If the car travels at a velocity 2v, the minimum stopping distance will be 4d.

You might be interested in
Four different resistors have various amounts of electric current flowing through them. Given the values of current I and resist
Artemon [7]

You did not provide the options. However, the options are

I = 6.0, R= 4.0 ohms

I = 9.0, R= 2.0ohms

I = 3.0, R= 2.0ohms

I = 8.0, R= 8.0 ohms

Answer:

The order of  the resistors from the highest to the lowest is:

I = 8.0, R= 8.0 ohms

I = 6.0, R= 4.0 ohms

I = 9.0, R= 2.0ohms

I = 3.0, R= 2.0 ohms

Explanation:

ohm's law states that voltage across a conductor is directly proportional to the current flowing through it.  V = IR

Based on this formula, the voltages in each of the resistors are calculated below from the highest to the lowest

  • For I = 8.0, R= 8.0 ohms

       V = 8 * 8 =64 volts

  •  For I = 6.0, R= 4.0 ohms

      V = 6 * 4 =24 volts

  • For I = 9.0, R= 2.0 ohms

       V = 9 * 2 =18 volts

  • For I = 3.0, R= 2.0 ohms

       V = 3 * 2 =6 volts

3 0
2 years ago
A nerve impulse travels along a myelinated neuron at 90.1 m/s.<br> What is this speed in mi/h?
algol [13]

Answer:

201.5537 mph

Explanation:

Given the following data;

Speed = 90.1 m/s

Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.

Mathematically, speed is given by the formula;

Speed = distance/time

To convert this value into miles per hour;

Conversion;

1 meter = 0.000621 mile

90.1 meters = 90.1 * 0.000621 = 0.05595 miles

1 metre per second = 2.237 miles per hour

90.1 meters per seconds = 90.1 * 2.237 = 201.5537 miles per hour

90.1 m/s = 201.5537 mph

7 0
2 years ago
A 71.80 kg person holding a steel ball stands motionless on a frozen lake.
Mars2501 [29]

Answer: 3.08 !! <3

Explanation: im sorry but im not sure y i just got the answer wrong and this is wut it told me was right :)

6 0
3 years ago
Read 2 more answers
A person jumps from a plane in is falling the person releases a parish you in continues to fall the person lays 35.2 kg and ther
irakobra [83]

Answer:

cookie

Explanation:

7 0
2 years ago
A mass m is tied to an ideal spring with force constant k and rests on a frictionless surface. The mass moves along the x axis.
7nadin3 [17]

Answer:x=\frac{x_m}{\sqrt{2}}

Explanation:

Given

initially mass is stretched to x_m

Let k be the spring Constant of spring

Therefore Total Mechanical Energy is \frac{kx_m^2}{2}

Position at which kinetic Energy is equal to Elastic Potential Energy

K=\frac{mv^2}{2}

U=\frac{kx^2}{2}

it is given

k=U

thus 2U=\frac{kx_m^2}{2}

2\times \frac{kx^2}{2}=\frac{kx_m^2}{2}

2x^2=x_m^2

x=\frac{x_m}{\sqrt{2}}

3 0
3 years ago
Other questions:
  • 500km is equal to how many millimeters
    13·1 answer
  • Due to tides mean sea level off of Newport Beach reaches a height of 1.3 meters during high tide and 0.3 meters during low tide.
    12·1 answer
  • 10 PTS! HELP!
    10·1 answer
  • Summarize what you learned this week about the electromagnetic spectrum
    7·2 answers
  • A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A
    5·1 answer
  • Do you think scientists will ever be able to recreate a living creature from the distant past successfully?
    8·2 answers
  • Does mass affect the final velocity of an object if the object begins with a high initial velocity? Why or why not?
    9·1 answer
  • When an object moves, stops moving, changes speed, or changes direction, how do scientists describe that condition?
    10·1 answer
  • Please help fast!
    13·1 answer
  • Find its moment of inertia about an axis perpendicular to its plane and passing through the midpoint of the line connecting its
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!