1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
10

A car traveling at a velocity v can stop in a minimum distance d. What would be the car's minimum stopping distance if it were t

raveling at a velocity of 2v?
a. 4d
b. 2d
c. 8d
d. √2 d
e. d
Physics
1 answer:
alexira [117]3 years ago
5 0

Answer:

a. 4d.

If the car travels at a velocity of 2v, the minimum stopping distance will be 4d.

Explanation:

Hi there!

The equations of distance and velocity of the car are the following:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x =  position of the car at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

v = velocity of the car at time t.

Let´s find the time it takes the car to stop using the equation of velocity. When the car stops, its velocity is zero. Then:

velocity = v0 + a · t      v0 = v

0 = v + a · t

Solving for t:

-v/a = t

Since the acceleration is negative because the car is stopping:

v/a = t

Now replacing t = v/a in the equation of position:

x = x0 + v0 · t + 1/2 · a · t²     (let´s consider x0 = 0)

x = v · (v/a) + 1/2 · (-a) (v/a)²    

x = v²/a - 1/2 · v²/a

x = 1/2 v²/a

At a velocity of v, the stopping distance is 1/2 v²/a = d

Now, let´s do the same calculations with an initial velocity v0 = 2v:

Using the equation of velocity:

velocity = v0 + a · t

0 = 2v - a · t

-2v/-a = t

t = 2v/a

Replacing in the equation of position:

x1 = x0 + v0 · t + 1/2 · a · t²  

x1 = 2v · (2v/a) + 1/2 · (-a) · (2v/a)²

x1 = 4v²/a - 2v²/a

x1 = 2v²/a

x1 = 4(1/2 v²/a)

x1 = 4x

x1 = 4d

If the car travels at a velocity 2v, the minimum stopping distance will be 4d.

You might be interested in
What is the main difference between the Schrödinger model and the Bohr atomic model?
netineya [11]

Answer:

Schrödinger believed that electrons could only exist in orbits, but Bohr stated that electrons could be found anywhere in the atom

Explanation: I got it right on test

4 0
3 years ago
A rock is thrown upward from the top of a 30 m building with a velocity of 5 m/s. Determine its velocity (a) When it falls back
castortr0y [4]

Answer:

a) 5 m/s downwards

b) 17.86 m/s

c) 24.82 m/s

d) 0.228

Explanation:

We can set the frame of reference with the origin on the top of the building and the X axis pointing down.

The rock will be subject to the acceleration of gravity. We can use the equation for position under constant acceleration and speed under constant acceleration:

X(t) = X0 + V0 * t + 1/2 * a * t^2

V(t) = V0 + a * t

In this case

X0 = 0

V0 = -5 m/s

a = 9.81 m/s^2

To know the speed it will have when it falls back past the original point we need to know when it will do it. When it does X will be 0.

0 = -5 * t + 1/2 * 9.81 * t^2

0 = t * (-5 + 4.9 * t)

One of the solutions is t = 0, but this is when the rock was thrown.

0 = -5 + 4.69 * t

4.9 * t = 5

t = 5 / 4.9

t = 1.02 s

Replacing this in the speed equation:

V(1.02) = -5 + 9.81 * 1.02 = 5 m/s (this is speed downwards because the X axis points down)

When the rock is at 15 m above the street it is 15 m under the top of the building.

15 = -5 * t + 1/2 * 9.81 * t^2

4.9 * t^s -5 * t - 15 = 0

Solving electronically:

t = 2.33 s

At that time the speed will be:

V(2.33) = -5 + 9.81 * 2.33 = 17.86 m/s

When the rock is about to reach the ground it is at 30 m under the top of the building:

30 = -5 * t + 1/2 * 9.81 * t^2

4.9 * t^s -5 * t - 30 = 0

Solving electronically:

t = 3.04 s

At this time it has a speed of:

V(3.04) = -5 + 9.81 * 3.04 = 24.82 m/s

---------------------

Power is work done per unit of time.

The work in this case is:

L = Ff * d

With Ff being the friction force, this is related to weight

Ff = μ * m * g

μ: is the coefficient of friction

L = μ * m * g * d

P = L/Δt

P = (μ * m * g * d)/Δt

Rearranging:

μ = (P * Δt) / (m * g * d)

1 horsepower is 746 W

20 minutes is 1200 s

μ = (746 * 1200) / (100 * 9.81 * 4000) = 0.228

8 0
3 years ago
the car starts from a stop to travel 1100 meters in 14 seconds. it is clocked at 65 m/s at point k. find its average speed and a
inysia [295]

Answer:

The average velocity of the car is, V = 74.04 m/s

Explanation:

Given data,

The initial velocity of the car, u = 0 m/s

The displacement of the ca, S = 1100 m

The time period of travel, t = 14 s

The velocity of the car at point k, v = 65 m/s

Using the II equation of motion,

                      S = ut + ½  at²

Substituting the given values,

                      1100 = 0 + ½ x a x 14²

                          a = 11.22 m/s²

Using the III equation of motion

                         v² = u² + 2 as

                          v = √(2as)              (∵ u = 0)

Substituting,

                           v = √(2 x 11.22 x 1100)

                              = 157.11 m/s

The average speed of the car,

                        V=\frac{0+65+157.11}{3}

                        V = 74.04 m/s

Hence, the average velocity of the car is, V = 74.04 m/s

4 0
3 years ago
A north magnetic pole is facing another north magnetic pole with a distance x. If the distance between the poles becomes 12x, wh
krek1111 [17]

Answer:

1.)The field energy will increase.

The rest of the answers:

2.)The energy increases, and the lines of force are denser

3.) It points toward the field of earths magnetic poles.

4.) l, ll, and lll only

5.) ll, lV, l, lll

4 0
3 years ago
Two children are pulling and pushing a 30.0 kg sled. The child pulling the sled is exerting a force of 12.0 N at a 45o angle. Th
irinina [24]
I'm not quite sure what happens to Fay so I didn't finish but hope it helps

5 0
3 years ago
Read 2 more answers
Other questions:
  • I need help finding moment
    14·1 answer
  • A 74.9 kg person sits at rest on an icy pond holding a 2.44 kg physics book. he throws the physics book west at 8.25 m/s. what i
    13·1 answer
  • The Asian Silver Carp is an invasive species of fish which has infested a number of American rivers. The disturbance of passing
    10·1 answer
  • Monday Homework Problem 10.6 A simple generator is constructed by rotating a flat coil in a uniform magnetic field. Suppose we r
    6·1 answer
  • Match the word to it's definition.
    11·1 answer
  • 2.<br> The inertia of an object depends on its
    12·1 answer
  • Which of the following are binary ionic compounds?
    11·1 answer
  • How do we calculate the "range" of the measurements?
    15·1 answer
  • All of the following are possible transition points that occur during adulthood except __________.
    10·2 answers
  • Que es el potencial motor?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!