Answer:
m∠CBD = m∠CDB ⇒ proved
Step-by-step explanation:
Let us solve the question
∵ AB ⊥ BD ⇒ given
→ That means m∠ABD = 90°
∴ m∠ABD = 90° ⇒ proved
∵ ED ⊥ BD ⇒ given
→ That means m∠EDB = 90°
∴ m∠EDB = 90° ⇒ proved
∵ ∠ABD and ∠EDB have the same measure 90°
∴ m∠ABD = m∠EDB ⇒ proved
∵ m∠ABD = m∠ABC + m∠CBD
∵ m∠EDB = m∠EDC + m∠CDB
→ Equate the two right sides
∴ m∠ABC + m∠CBD = m∠EDC + m∠CDB
∵ m∠ABC = m∠EDC ⇒ given
→ That means 1 angle on the left side = 1 angle on the right side, then
the other two angles must be equal in measures
∴ m∠CBD = m∠CDB ⇒ proved
Answer:
See below
Step-by-step explanation:
If you are squaring a number, and then taking the square root of it, you are essentially undoing the original operation:
![\displaystyle \sqrt{\biggr(\frac{4}{7}\biggr)^2}=\biggr[\biggr(\frac{4}{7}\biggr)^2\biggr]^{\frac{1}{2}}=\biggr(\frac{4}{7}\biggr)^{2*\frac{1}{2}}=\frac{4}{7}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%7B%5Cbiggr%28%5Cfrac%7B4%7D%7B7%7D%5Cbiggr%29%5E2%7D%3D%5Cbiggr%5B%5Cbiggr%28%5Cfrac%7B4%7D%7B7%7D%5Cbiggr%29%5E2%5Cbiggr%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cbiggr%28%5Cfrac%7B4%7D%7B7%7D%5Cbiggr%29%5E%7B2%2A%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cfrac%7B4%7D%7B7%7D)
Hence, we are back starting with the original number