Answer:
The sample of sizes 2 and their mean are given below.
Step-by-step explanation:
The population consist of 5 values, S = {1, 3, 4, 4, 6}.
The number of samples of size 2 (without replacement) that can be formed from these 5 values is:

Th formula to compute the mean is:

List the 10 samples and their mean as follows:
<u>Sample</u> <u>Mean</u>
(1, 3) ![\bar x=\frac{1}{2}[1+3]=\frac{4}{2}=2.0](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B1%2B3%5D%3D%5Cfrac%7B4%7D%7B2%7D%3D2.0)
(1, 4) ![\bar x=\frac{1}{2}[1+4]=\frac{5}{2}=2.5](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B1%2B4%5D%3D%5Cfrac%7B5%7D%7B2%7D%3D2.5)
(1, 4) ![\bar x=\frac{1}{2}[1+4]=\frac{5}{2}=2.5](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B1%2B4%5D%3D%5Cfrac%7B5%7D%7B2%7D%3D2.5)
(1, 6) ![\bar x=\frac{1}{2}[1+6]=\frac{7}{2}=3.5](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B1%2B6%5D%3D%5Cfrac%7B7%7D%7B2%7D%3D3.5)
(3, 4) ![\bar x=\frac{1}{2}[3+4]=\frac{7}{2}=3.5](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B3%2B4%5D%3D%5Cfrac%7B7%7D%7B2%7D%3D3.5)
(3, 4) ![\bar x=\frac{1}{2}[3+4]=\frac{7}{2}=3.5](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B3%2B4%5D%3D%5Cfrac%7B7%7D%7B2%7D%3D3.5)
(3, 6) ![\bar x=\frac{1}{2}[3+6]=\frac{9}{2}=4.5](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B3%2B6%5D%3D%5Cfrac%7B9%7D%7B2%7D%3D4.5)
(4, 4) ![\bar x=\frac{1}{2}[4+4]=\frac{8}{2}=4.0](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B4%2B4%5D%3D%5Cfrac%7B8%7D%7B2%7D%3D4.0)
(4, 6) ![\bar x=\frac{1}{2}[4+6]=\frac{10}{2}=5.0](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B4%2B6%5D%3D%5Cfrac%7B10%7D%7B2%7D%3D5.0)
(4, 6) ![\bar x=\frac{1}{2}[4+6]=\frac{10}{2}=5.0](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7B2%7D%5B4%2B6%5D%3D%5Cfrac%7B10%7D%7B2%7D%3D5.0)