Answer:
V= 12mL
Explanation:
you had the right idea with your Significant figures however, when we divide we see that it requires 2 significant figures as our least amount. this is because when looking at our division, 62 has 2 sig. fig. while 5.35 has a total 3. when looking at your answer we see that you had a total of 3 sig. figures. so in actuakity you had to round up to 12 and not to the tenths because the decimal makes .6 count as your third sig fig.
Answer:
Axial
Explanation:
In the most stable conformation of Cis-3-tert-Butylcyclohexanol, the tert-butyl group is at equatorial position and the alcohol group is in the axial position.
If the tert-butyl group is placed in equatorial position, repulsions are minimized. The bulkier the group, the greater the energy difference between the axial and equatorial conformers. Hence for a ring having a bulky substituent, such bulky substituent is better placed in the equatorial position.
The energy difference between the conformers of Cis-3-tert-Butylcyclohexanol is so high that the compound is almost "frozen" in a conformation where the tert-butyl groups are equatorial and the -OH groups are axial. This conformer is more stable by 24 KJ/mol.
Answer:
cesium
In particular, cesium (Cs) can give up its valence electron more easily than can lithium (Li). In fact, for the alkali metals (the elements in Group 1), the ease of giving up an electron varies as follows: Cs > Rb > K > Na > Li with Cs the most likely, and Li the least likely, to lose an electron
Explanation:
Answer:
b Fuel for fusion reactors can be extracted from ocean water.
Explanation:
The fuel is deuterium, which makes up 0.02% of the hydrogen atoms in water. The oceans contain more than a billion cubic kilometres of water, so that's a lot of deuterium.
a is wrong. The fuel for fusion reactors is deuterium.
c is wrong. There is much research, but there are no large-scale fusion reactors in operation.
d is wrong. Fusion reactors do not produce radioactive waste as spent fuel. Most of the radioactive waste would be the reactor core itself.
It is a chemical <em>process</em> - an oxidation.