Answer:
they both gain one electron
Explanation:
they are both halogens and they each have one unpaired electron so that unpaired electron join together to make them form a bond
<span>Answer:
Some metals have the ability to form differently charged ions. For example, iron can form
2
+
or
3
+
ions. If you simply gave the name iron chloride, you would not know which charge the iron ion possessed.
A Roman numeral is to indicate the charge of the iron.
Iron (
II
) means the iron has a
2
+
charge
Iron (
III
) means that the iron has a
3
+
charge
So, iron (
II
) oxide would have a chemical formula of
FeO
.
(The oxide ion has a
2
â’
charge to balance the
2
+
of the iron to form a neutral compound.)
Iron (
III
) oxide would have a chemical formula of
Fe
2
O
3
(Here you need to find the common multiple of 6, so two iron ions with a
3
+
charge will balance the charge of three oxide ions with a
2
+
charge.)</span>
Answer:
<em> ionic equation : </em>3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em> net ionic equation: </em>3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Explanation:
The balanced equation is
3FeSO4(aq)+ 2Na3PO4(aq) → Fe3(PO4)2(s)+ 3Na2SO4(aq)
<em>Ionic equations: </em>Start with a balanced molecular equation. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
. Indicate the correct formula and charge of each ion. Indicate the correct number of each ion
. Write (aq) after each ion
.Bring down all compounds with (s), (l), or (g) unchanged. The coefficents are given by the number of moles in the original equation
3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em>Net ionic equations: </em>Write the balanced molecular equation. Write the balanced complete ionic equation. Cross out the spectator ions, it means the repeated ions that are present. Write the "leftovers" as the net ionic equation.
3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
Answer:
The correct answer is : No, because there are 4 hydrogen atoms on the reactants side and 2 on the products side.
Explanation:

The given reaction equation is not balanced because:
- Number of hydrogen atoms on both sides are not equal that is 4 on reactants side and 2 on products side.
- Number of oxygen atoms on both sides are not equal that is 3 on reactants side and 2 on products side.
In a balanced chemical equation number of atoms of each elements are equal on both sides.
So, the balanced chemical equation will be:
