The soda an air is most likely bubbling up and is going to explode.
57.0 is it rounded to three sig figs. You count three spaces then round from there, which would be the zero and you would round down because the four is there.
Thomson's atomic model is a theory about the atomic structure proposed in 1904 by Thomson, who discovered the electron in 1897, a few years before the discovery of the proton and the neutron.
Hope this helps :))
Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ
Explanation:
Since liquid isopropanol is a polar liquid and water is also a polar solvent. So, when both of them are added together then according to the like dissolves like principle they get dissolved.
At the molecular level, the polar molecules of isopropanol get attracted towards the polar molecules of water at the surface of water.
As a result, water molecules get surrounded by isopropanol. Thus, water molecules enter the solution and evenly spread into the solution.