There’s no formula that relates solubility to temperature, but you can look up the solubility constant Ksp of substance given and then take the square root of that to find solubility.
In general, SOLUBILITY<span> is an ability of a substance to dissolve. In the process of dissolving, the substance which is being dissolved is called a </span>solute<span> and the substance in which the solute is dissolved is called a </span>solvent.<span> A mixture of solute and solvent is called a </span><span>solution.</span>
Answer:
9.4
Explanation:
The equation for the reaction can be represented as:
+
⇄ 
The ICE table can be represented as:
+
⇄ 
Initial 0.27 0.49 0.0
Change -x -2x x
Equilibrium 0.27 - x 0.49 -2x x
We can now say that the concentration of
at equilibrium is x;
Let's not forget that at equilibrium
= 0.11 M
So:
x = [
] = 0.11 M
[
] = 0.27 - x
[
] = 0.27 - 0.11
[
] = 0.16 M
[
] = (0.49 - 2x)
[
] = (0.49 - 2(0.11))
[
] = 0.49 - 0.22
[
] = 0.27 M
![K_C = \frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_C%20%3D%20%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)


= 9.4
∴ The equilibrium constant at that temperature = 9.4
Oxidation number is defined as the total number of electrons that are gained or lost by the atom to form a chemical bond.
the oxidation number of the compound H₂S is 0.
the sum of the oxidation numbers of the individual elements should add up to the oxidation number of the compound.
(oxidation number of H x 2 H ions) + oxidation number of S = 0
since we know the oxidation number of H, lets name the oxidation number of S = x
(+1 * 2 )+ (x) = 0
2 + x = 0
x = -2
oxidation number of S is -2