corresponding angles, therefore
m∠1 = m∠2 → m∠2 = 130°
vertical angles, therefore
m∠2 = m∠3 → m∠3 = 130°
If ∠1 and ∠2 are complementary, then m∠1 + m∠2 = 90°.
If ∠2 and ∠3 are complementary, then m∠2 + m∠3 = 90°
Therfore

Answer:
Step-by-step explanation:
45
Answer:
the anwser you put is correct
Step-by-step explanation:
congragulations! glad i could help :)
Answer and step-by-step explanation:
The polar form of a complex number
is the number
where
is called the modulus and
is called the argument. You can switch back and forth between the two forms by either remembering the definitions or by graphing the number on Gauss plane. The advantage of using polar form is that when you multiply, divide or raise complex numbers in polar form you just multiply modules and add arguments.
(a) let's first calculate moduli and arguments

now we can write the two numbers as

(b) As noted above, the argument of the product is the sum of the arguments of the two numbers:

(c) Similarly, when raising a complex number to any power, you raise the modulus to that power, and then multiply the argument for that value.
![(z_1)^1^2=[4e^{-i\frac \pi6}]^1^2=4^1^2\cdot (e^{-i\frac \pi6})^1^2=2^2^4\cdot e^{-i(12)\frac\pi6}\\=2^2^4 e^{-i\cdot2\pi}=2^2^4](https://tex.z-dn.net/?f=%28z_1%29%5E1%5E2%3D%5B4e%5E%7B-i%5Cfrac%20%5Cpi6%7D%5D%5E1%5E2%3D4%5E1%5E2%5Ccdot%20%28e%5E%7B-i%5Cfrac%20%5Cpi6%7D%29%5E1%5E2%3D2%5E2%5E4%5Ccdot%20e%5E%7B-i%2812%29%5Cfrac%5Cpi6%7D%5C%5C%3D2%5E2%5E4%20e%5E%7B-i%5Ccdot2%5Cpi%7D%3D2%5E2%5E4)
Now, in the last step I've used the fact that
, or in other words, the complex exponential is periodic with
as a period, same as sine and cosine. You can further compute that power of two with the help of a calculator, it is around 16 million, or leave it as is.
Answer:
She needs to sample 189 trees.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
That is z with a pvalue of
, so Z = 1.96.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
The standard deviation of the population is 70 peaches per tree.
This means that 
How many trees does she need to sample to obtain an average accurate to within 10 peaches per tree?
She needs to sample n trees.
n is found when M = 10. So



Dividing both sides by 10:



Rounding up:
She needs to sample 189 trees.