Answer:
One solution
Step-by-step explanation:
3x - 5 = - 3
1. Add 5 to both sides
3x= 2
Then Divide by three to get x alone
x= 2/3
X has only one solution here
Answer:
The speed of a wave depends on the characteristics of the medium. For example, in the case of a guitar, the strings vibrate to produce the sound. The speed of the waves on the strings, and the wavelength, determine the frequency of the sound produced. The strings on a guitar have different thickness but may be made of similar material. They have different linear densities, where the linear density is defined as the mass per length,
μ
=
mass of string
length of string
=
m
l
.
In this chapter, we consider only string with a constant linear density. If the linear density is constant, then the mass
(
Δ
m
)
of a small length of string
(
Δ
x
)
is
Δ
m
=
μ
Δ
x
.
For example, if the string has a length of 2.00 m and a mass of 0.06 kg, then the linear density is
μ
=
0.06
kg
2.00
m
=
0.03
kg
m
.
If a 1.00-mm section is cut from the string, the mass of the 1.00-mm length is
Δ
m
=
μ
Δ
x
=
(
0.03
kg
m
)
0.001
m
=
3.00
×
10
−
5
kg
.
The guitar also has a method to change the tension of the strings. The tension of the strings is adjusted by turning spindles, called the tuning pegs, around which the strings are wrapped. For the guitar, the linear density of the string and the tension in the string determine the speed of the waves in the string and the frequency of the sound produced is proportional to the wave speed.
Answer: 1/4096
Step-by-step explanation:
4^-2 = 1/16
4^-4 = 1/256
multiplying them gives 1/4096
Answer:
0.166666667
Step-by-step explanation:
the 6 keeps repeating forever
In probability, problems involving arrangements are called combinations or permutations. The difference between both is the order or repetition. If you want to arrange the letters regardless of the order and that there must be no repetition, that is combination. Otherwise, it is permutation. Therefore, the problem of arrange A, B, C, D, and E is a combination problem.
In combination, the number of ways of arranging 'r' items out of 'n' items is determined using n!/r!(n-r)!. In this case, you want to arrange all 5 letters. So, r=n=5. Therefore, 5!/5!(505)! = 5!/0!=5!/1. It is simply equal to 5! or 120 ways.