Taking into account the reaction stoichiometry, the correct answer is the third option: 15.63 moles of HgO are needed to produce 250 g of O₂.
In first place, the balanced reaction is:
2 HgO → 2 Hg + O₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- HgO: 2 moles
- Hg: 2 moles
- O₂: 1 moles
The molar mass of the compounds is:
- HgO: 216.59 g/mole
- Hg: 200.59 g/mole
- O₂: 32 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- HgO: 2 moles× 216.59 g/mole= 433.18 grams
- Hg: 2 moles× 200.59 g/mole= 401.18 grams
- O₂: 1 mole× 32 g/mole= 32 grams
Then the following rule of three can be applied: if by reaction stoichiometry 32 grams of O₂ are produced by 2 moles of HgO, 250 grams of O₂ are produced from how many moles of HgO?

<u><em>moles of HgO= 15.625 moles≅ 15.63 moles</em></u>
Finally, the correct answer is the third option: 15.63 moles of HgO are needed to produce 250 g of O₂.
Learn more about reaction stoichiometry:
There are the four phases of the cell cycle. M, G1, S and G3. And in S (Synthesis) phase genetic material is doubled.
Answer:
has very few trees
has cool and rainy winters
has dense shrubs and grasses
Explanation:
I've done this before! Good luck!
An isotope is when there is same amount of atomic number but different mass number. It also mean that only the number of neutrons changes if there is an isotope present.