Explanation:
According to the law of conservation of mass, mass can neither be created nor destroyed but it can simply be transformed from one form to another.
For example, 
Mass of Na = 23 g/mol
Mass of Cl = 35.5 g/mol
Sum of mass of reactants = mass of Na + mass of Cl
= 23 + 35.5 g/mol
= 58.5 g/mol
Mass of product formed is as follows.
Mass of NaCl = mass of Na + mass of Cl
= (23 g/mol + 35.5) g/mol
= 58.5 g/mol
As mass reacted is equal to the amount of mass formed. This shows that mass is conserved.
As a result, law of conservation of mass is obeyed.
Answer: option C) gather information and identify stakeholders
Explanation:
The sales, distribution and advertisement of alcoholic beverages requires information on consumer protection, health risks, and environmental factors. And Garrett would simply get such from the relevant stakeholders like regulatory agencies.
Thus, Garrett should first gather information and identify stakeholders
The relation between the volume and the temperature of the gas is given by Charles's law. The final temperature of the gas at 0.75 liters is -193.8°C.
<h3>What is Charles's law?</h3>
Charles's law was derived from the ideal gas equation and is used to state the relationship between the temperature and the volume of the gas. With a decrease in volume the temperature decreases.
If the pressure is kept constant then with an increase in temperature the volume of the gas expands. The law is given as,
V₁ ÷ T₁ = V₂ ÷ T₂
Given,
Initial volume (V₁) = 2.80 L
Initial temperature (T₁) = 23 °C = 296.15 K
Final volume (V₂) = 0.75 L
Final temperature = T₂
Substituting the values above as:
T₂ = (V₂ × T₁) ÷ V₁
= 0.75 × 296.15 ÷ 2.80
= 79.325 K
Kelvin is converted as, 79.325K − 273.15 = -193.8°C
Therefore, the final temperature is -193.8°C.
Learn more about Charle's law, here:
brainly.com/question/16927784
#SPJ1
Answer:
The force of the gases pushes downward at the same time that the gases push the rocket upwards. 1.
Explanation:
Answer:
Rb2CO3(aq)+Fe(C2H3O2)2(aq)--> 2Rb(C2H3O2)(aq) + FeCO3(s)
Explanation:
The reaction shown in the answer is the reaction of rubidium carbonate and iron II acetate. Rubidium is far more reducing than Fe II hence it can displace Fe II from its salt as shown.
The reducing property of metals depends on the value of their individual electrode potential values. For rubidium, its standard reduction potential is -2.98 V while that of Fe II is -0.44V. Hence rubidium can displace Fe II from its salt as shown above.