Well if the change is reversible then it is a physical change, but if not then it is a chemical change.
<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
From the question;
1 x 10^5 people can fill 1 stadium
We are given, 1 x 10^18 atoms of iron
We are required to determine the number of stadiums that 1 x 10^18 atoms of iron would occupy.
We are going to assume that a stadium would occupy a number of atoms equivalent to the number of people.
Therefore;
One stadium = 1 x 10^5 atoms
Then, to find the number of stadiums that will be occupied by 1 x 10^18 atoms;
No. of stadiums = Total number of atoms ÷ Atoms in a single stadium
= 1 x 10^18 atoms ÷ 1 x 10^5 atoms
= 1 x 10^13 stadiums
Therefore, 1 x 10^18 atoms of iron would occupy 1 x 10^13 stadiums
The molecule that contains the fewest number of Hydrogen atoms would be B. Al(OH)3. It only has 3 Hydrogen atoms.
Answer:
The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Explanation:
Beer-Lambert's law :
Formula used :



where,
A = absorbance of solution
c = concentration of solution
= Molar absorption coefficient
l = path length
= incident light
= transmitted light
Given :
l = 1 cm, c = 1 mg/mL ,
Molar mass of myoglobin = 17.8 kDa = 17.8 kg/mol=17800 g/mol
(1 Da = 1 g/mol)
c = 1 mg /mL = 

1 mg = 0.001 g, 1 mL = 0.001 L


The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Answer:My answer is in the photo
Explanation: