this is a dilution equation where 50.0 mL of 1.50 M H₂SO₄ is taken and added to 200 mL of water.
c1v1 = c2v2
where c1 is concentration and v1 is volume of the concentrated solution
and c2 is concentration and v2 is volume of the diluted solution to be prepared
50.0 mL of 1.50 M H₂SO₄ is added to 200 mL of water so the final solution volume is - 200 + 50.0 = 250 mL
substituting these values in the formula
1.50 M x 50.0 mL = C x 250 mL
C = 0.300 M
concentration of the final solution is A) 0.300 M
Answer:
0.46 V
Explanation:
The emf for the cell is given by:
Eº cell = Eº oxidation + Eº reduction
From the given balanced chemical equation, we can deduce that Fe²⁺ has been oxidized to Fe³⁺, and O reduced from 0 to negative 2, according to the half cell reactions:
4Fe²⁺ ⇒ Fe³⁺ + 4e⁻ oxidation
O₂ + 4H⁺ + 4 e⁻ ⇒ 2 H₂O reduction
From reference tables for the standard reduction potential, we get
Eº red Fe³⁺ / Fe²⁺ Eºred = 0.77 V
Eº red O₂ / H₂O Eºred = 1.23 V
Now all we need to do is change the sign of Eº reduction for the species being oxidized ( Fe²⁺ ) and add it to Eº reduction O₂:
Eº cell = Eº oxidation + Eº reduction = - (0.77 V ) + 1.23 V = 0.46 V
The element that is most reactive to gas is Hydrogen
Answer:
Ksp = 1.07x10⁻²¹
Explanation:
Molar solubility is defined as moles of solute can be dissolved in 1L.
Ksp for NiS is defined as:
NiS(s) ⇄ Ni²⁺(aq) + S²⁻(aq)
Ksp = [Ni²⁺] [S²⁻]
As molar solubility is 3.27x10⁻¹¹M, concentration of [Ni²⁺] and [S²⁻] is 3.27x10⁻¹¹M for both.
Replacing:
Ksp = [3.27x10⁻¹¹M] [3.27x10⁻¹¹M]
<em>Ksp = 1.07x10⁻²¹</em>
<em></em>