Answer:
a. Rate = k×[A]
b. k = 0.213s⁻¹
Explanation:
a. When you are studying the kinetics of a reaction such as:
A + B → Products.
General rate law must be like:
Rate = k×[A]ᵃ[B]ᵇ
You must make experiments change initial concentrations of A and B trying to find k, a and b parameters.
If you see experiments 1 and 3, concentration of A is doubled and the Rate of the reaction is doubled to. That means a = 1
Rate = k×[A]¹[B]ᵇ
In experiment 1 and to the concentration of B change from 1.50M to 2.50M but rate maintains the same. That is only possible if b = 0. (The kinetics of the reaction is indepent to [B]
Rate = k×[A][B]⁰
<h3>Rate = k×[A]</h3>
b. Replacing with values of experiment 1 (You can do the same with experiment 3 obtaining the same) k is:
Rate = k×[A]
0.320M/s = k×[1.50M]
<h3>k = 0.213s⁻¹</h3>
Iron has magnetic properties, so you would just need to hold a magnet over the mixture and the filings will come right out.
Answer:
Power = 7.5 watt
Explanation:
Given data:
Power expend = ?
Force applied = 10 N
Distance cover = 1.5 m
Time = 2 s
Solution:
Power = work/ time
First of all we will calculate work.
Work = Force × distance
Work = 10 N × 1.5 m
Work = 15 N.m
Now we will calculate the power.
Power = 15 N.m / 2s
N.m/s = 1 watt
Power = 7.5 watt
Increasing every day. in 2013, we had about 7.125 Billion. in 9160, we had closer to 3 billion. It is still on a pretty steady clime today.