Answer:
i dont either
Step-by-step explanation:
We can see that, when the input is 5, the output is 24.
<h3>
How to evaluate an equation?</h3>
Here we have the equation:

Where y is the output and x is the input.
We want to evaluate it with the input as 5, so we need to replace the variable x by the number 5, we will get:

Then we can see that, when the input is 5, the output is 24.
If you want to learn more about evaluating functions:
brainly.com/question/1719822
#SPJ1
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1
Answer:
Yoko bought 5 pounds of coffee.
If you want the steps, let me know. Hope this helps!!
Step-by-step explanation:
Given:
Expression is

To prove:
If r is any rational number, then
is rational.
Step-by-step explanation:
Property 1: Every integer is a rational number. It is Theorem 4.3.1.
Property 2: The sum of any two rational numbers is rational. It is Theorem 4.3.2.
Property 3: The product of any two rational numbers is rational. It is Exercise 15 in Section 4.3.
Let r be any rational number.
We have,

It can be written as

Now,
3, -2 and 4 are rational numbers by property 1.
is rational by Property 3.
are rational by Property 3.
is rational by property 2.
So,
is rational.
Hence proved.