Answer:
Percentage dissociated = 0.41%
Explanation:
The chemical equation for the reaction is:

The ICE table is then shown as:

Initial (M) 1.8 0 0
Change (M) - x + x + x
Equilibrium (M) (1.8 -x) x x
![K_a = \frac{[C_3H_6ClCO^-_2][H^+]}{[C_3H_6ClCO_2H]}](https://tex.z-dn.net/?f=K_a%20%20%3D%20%5Cfrac%7B%5BC_3H_6ClCO%5E-_2%5D%5BH%5E%2B%5D%7D%7B%5BC_3H_6ClCO_2H%5D%7D)
where ;


Since the value for
is infinitesimally small; then 1.8 - x ≅ 1.8
Then;




Dissociated form of 4-chlorobutanoic acid = 
Percentage dissociated = 
Percentage dissociated = 
Percentage dissociated = 0.4096
Percentage dissociated = 0.41% (to two significant digits)
The two molecules will only react if they have enough energy. By heating the mixture, you are raising the energy levels of the molecules involved in the reaction. Increasing temperature also means the molecules are moving around faster and will therefore "bump" into each other more often.
Answer:
Temperature decreases and density increases
Explanation:
Let us remember that density of a material increases as the temperature of the material decreases. So the cooler a material becomes, the denser it becomes also.
Between points B and C, the material rapidly cools down and the temperature decreases accordingly. This ultimately results in an increase in density since cooler materials are denser than hot materials.
To try to get attention, it's not safe and you can get sent to the hospital. People think it's a joke, it's really not.