<em><u>Tony has 24 books in total</u></em>
The two horizontal lines are parallel ( This is given by the red triangles)
Because the lines are parallel, the two angles 1 & 2 would be the same.
Set the two equations for the angle to equal each other and solve:
8y-6 = 7y
Add 6 to each side:
8y = 7y+6
Subtract 7y from each side:
y = 6
Now you have the value for y, solve for angle 2 by replacing y with 6:
Angle 2 = 7y = 7(6) = 42 degrees.
Answer:
The graph has a domain of all real numbers.
The graph has a y-intercept at
.
The graph has an x-intercept at
.
Step-by-step explanation:
Given: The graph is ![y=\sqrt[3]{x-1}+2](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2)
The domain of a function is a set of input values for which the function is real and defined.
Thus, the graph has a domain of
.
To find the y-intercept: To find the y-intercept, substitute
in
.
![\begin{aligned}y &=\sqrt[3]{x-1}+2 \\&=\sqrt[3]{0-1}+2 \\&=-1+2 \\&=1\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dy%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C%26%3D%5Csqrt%5B3%5D%7B0-1%7D%2B2%20%5C%5C%26%3D-1%2B2%20%5C%5C%26%3D1%5Cend%7Baligned%7D)
Thus, the y-intercept is 
To find the x-intercept: To find the x-intercept, substitute
in
.
![\begin{aligned}y &=\sqrt[3]{x-1}+2 \\0 &=\sqrt[3]{x-1}+2 \\-2 &=\sqrt[3]{x-1} \\(-2)^{3} &=(\sqrt[3]{x-1})^{3} \\-8 &=x-1 \\-7 &=x\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dy%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C0%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C-2%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%20%5C%5C%28-2%29%5E%7B3%7D%20%26%3D%28%5Csqrt%5B3%5D%7Bx-1%7D%29%5E%7B3%7D%20%5C%5C-8%20%26%3Dx-1%20%5C%5C-7%20%26%3Dx%5Cend%7Baligned%7D)
Thus, the x-intercept is 
Answer:
The answer is: 1 43/48
~hope this answered your question correctly, have a gr8 day my friend!~
Step-by-step explanation: