Objects can only go so fast and that speed is called terminal velocity. so the answer is A
Weathering, Erosion, deposition, acid rain, precipitation
Explanation:
<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer:
B. w=12.68rad/s
C. α=3.52rad/s^2
Explanation:
B)
We can solve this problem by taking into account that (as in the uniformly accelerated motion)
( 1 )
where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.
In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have


to calculate the angular speed w we can use
Thus, wf=12.68rad/s
C) We can use our result in B)

I hope this is useful for you
regards
Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)