To solve this problem it is necessary to apply the concepts related to the Moment. The moment in terms of the Force and the time can be expressed as
F = Force
At the same time the moment can be expressed in terms of mass and velocity, mathematically it can be given as
Where
m = Mass
Change in velocity
Our values are given as
By equating the two equations we can find the Force,
Therefore, the net average force will be:
The negative symbol indicates that the direction of the force is upwards.
Answer: k = 1163.72 N/m²
Explanation: if the bow obeys hook's law, then force is proportional to extension.
F = ke.
F= Force = 263 N
k = force constant
e = extension = 0.226m
263 = k * 0.226
k = 263/ 0.226
k = 1163.72 N/m²
Answer:
The power exerted by the student is 51.2 W
Explanation:
Given;
extension of the elastic band, x = 0.8 m
time taken to stretch this distance, t = 0.5 seconds
the spring constant, k = 40 N/m
Apply Hook's law;
F = kx
where;
F is the force applied to the elastic band
k is the spring constant
x is the extension of the elastic band
F = 40 x 0.8
F = 32 N
The power exerted by the student is calculated as;
P = Fv
where;
F is the applied force
v is velocity = d/t
P = F x (d/t)
P = 32 x (0.8 /0.5)
P = 32 x 1.6
P = 51.2 W
Therefore, the power exerted by the student is 51.2 W
The height reached by the two carts after collision is determined as 5.34 m.
<h3>
Initial velocity of Cart A</h3>
Apply the principle of conservation of mechanical energy.
K.E = P.E
v = √2gh
v = √(2 x 9.8 x 12)
v = 15.34 m/s
<h3>Final velocity of the two carts after the collision</h3>
Apply the principle of conservation of linear momentum for inelastic collision.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
8(15.34) + 4(0) = v(8 + 4)
122.72 = 12v
v = 10.23 m/s
<h3>Height reached by both carts</h3>
Apply the principle of conservation of mechanical energy.
P.E = K.E
mgh = ¹/₂mv²
h = v²/(2g)
h = (10.23²) / (2 x 9.8)
h = 5.34 m
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1